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Abstract—The propagation of oscillatory waves through periodic elastic composites has been analysed on
the basis of the Floquet theory. This leads to self-adjoint differential equation systems which it was proved
convenient to solve by variational methods. Many composites, such as the light-weight high-strength
boron-epoxy material, consist of strong reinforcing components in a plastic matrix. The latter can exhibit
viscoelastic properties which can have a significant influence on wave propagation characteristics.
Replacement of the elastic constant by the viscoelastic complex modulus changes the mathematical
structure so that the differential equation system is no longer self-adjoint. However, a modification of the
variational principles is suggested which retains formal self-adjointness, and yields variational principles
which contain additional boundary terms. These are applied to the determination of wave speeds and mode
shapes for a laminated composite made of homogeneous elastic reinforcing plates in a homogeneous
viscoelastic matrix for plane waves propagating normally to the reinforcing plates. These resuits agree well
with the exact solution which can be evaluated in this simple case. The variational principles permit
solutions for periodic, but otherwise arbitrary variation of material properties.

INTRODUCTION

A composite medium typically consists of a matrix material with an embedded reinforcing
material in the form of fibers or laminations. A laminated composite can usually be modelled as
alternating layers of matrix and filament arranged in a periodic manner, while a fiber reinforced
composite can often be represented by a homogeneous matrix in which a two dimensional
doubly periodic array of filaments is embedded.

A convenient method for analysing wave propagation in composite media is the use of
Floquet theory. This approach has been recently used by several authors{1-7] to study steady
state wave propagation in periodic elastic composites. Of these, some[1-5] used variational
methods while others[6,7] used direct numerical methods involving discretization of the
governing differential equations and associated quasi-periodic boundary conditions.

In practice, the matrix in a composite is often a polymer which exhibits viscoelastic
properties. This leads to dissipation as well as dispersion. Free wave propagation in an infinite
laminated viscoelastic composite was studied by the present authors in [8] using Floquet theory
and finite difference methods. In the viscoelastic case, forced steady wave propagation leads to
real frequencies and complex wave numbers (attenuating waves) while free waves with no
applied tractions have complex frequencies and real wave numbers (damped waves)[8].

Consideration of viscoelastic properties of the matrix leads to complex viscoelastic moduli
which are functions of the frequency that can be real or complex. Even in the elastic case[1] it
is convenient to utilize complex analysis to incorporate the changing phase as the wave
traverses the periodic medium, so that the displacement is expressed by

i = u(x)e

where o is the frequency, ¢ is time and u(x) is complex. Application of variational methods
involves integrals of the type

al2
Iy, u5) = L/z {- oSSz, p(X)wzuTu'z} dx
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where n(x) is the elastic modulus variation, p(x) that of the density, a is the periodic cell length
and * denotes the complex conjugate. For elasticity with n and frequency w real, the integrals
are Hermitian: I(u;, ua) = I*(u2, u;) and self-adjoint differential operator systems result for
determining the displacement or stress fields. For viscoelasticity, when 5 and w are complex,
the integrals are not Hermitian since n*# n and the resulting differential operators are
non-self-adjoint. However, if one formally bases the theory on real analysis, so that the
complex conjugate sign is removed from the integral even though u(x) is complex, the integral
is then symmetric: I(u,, u») = I(u,, u,), and hence formally self-adjoint differential operators are
generated. This is so, with u(x) complex, even though the integral I(u, u) is then no longer
physically an energy integral and the variational principle no longer expresses Hamilton’s
principle. This formulation introduces an additional boundary term, so that the system is
formally self adjoint: a self-adjoint operator but not with the appropriate boundary conditions.
These boundary terms can be included to generate variational principles, and the ones
presented here are formulated in this way.

In this paper, the strain energy[1], complementary energy[2] and Hellinger-Reissner[3-5]
variational principles are extended so that they can be used in the viscoelastic case. As an
illustration, the extended version of the Hellinger-Reissner [4] variational principle is applied to
the problem of free waves in an infinite one dimensional viscoelastic composite{8]. This
principle is chosen because it gave very accurate results in the elastic case[4]. A composite with
two homogeneous layers per cell is studied with the filament elastic and the matrix modelled as a
three element solid. The Rayleigh-Ritz method is used to obtain dispersion relations and mode
shapes and the results compared with the exact solution which exists in this case. For two
homogeneous components the elastic solution has been obtained in closed form{9, 2] and this
can be adapted to the case of linear viscoelastic components. The question of rapidity of
convergence to the exact solution is discussed.

The present method can be used to study wave motions in general one-dimensional periodic
viscoelastic composites which otherwise exhibit arbitrary variations of material properties.
Waves in fiber reinforced viscoelastic composites can be studied by using similar variational
principles in two dimensions.

GOVERNING EQUATIONS

We consider wave propagation in a one dimensional laminated viscoelastic composite, and,
in particular, choose a two material composite as shown in Fig. 1. This example is chosen
because the variational principles to be presented in the next section can then be easily
compared with those in the elastic case[1-5]. Variational principles for any general one-
dimensional inhomogeneous periodic viscoelastic medium can be easily obtained by suitable
modification of these principles.

The composite covers the full space —» <x <®. We study one-dimensional strain waves
propagating in a direction x normal to the interface planes. For harmonic waves, the stress and
displacement are of the form ¢ = o(x)e™' and & = u(x)e™. The quantities o and u are, in
general, complex.

MATRIX FILAMENT MATRIX

Fig. 1. Composite cell.
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Within each cell, the governing differential equations are

:—:5-;+ p(x)0’u =0 €))
o=nx 03 @

where 7= A +2u in terms of complex Lamé viscoelastic moduli of the constituent materials.
The quantities 5 and p are periodic with period a

nx+a;w)=n(x;w), plx+a)=p(x)
and within each cell they are discontinuous functions defined by

mw),p —al2<x<-bf2
n(x; ), p(x) =4 Mmw),py —b2<x<bf2
mlw),pr  b2<x<al2

We note that 7, and 7, are, in general, complex functions of the possibly complex frequency
@,

By Floquet theory[l] the displacement and stress satisfy the quasi-periodic boundary
conditions across each cell

u(al2) = u(- a/2)e™ 3
o(a2) = o(— af2) e @
where g is the wave number.
The interfaces are assumed perfectly bonded so that u and ¢ are continuous across them
u(xot)=u(x—) x=%b2 (5)
al{xe+) = a{x—) Xo= b2, 6)

VARIATIONAL PRINCIPLES
(a) Strain energy principle
Let us choose a pair of sectionally continuous and differentiable functions # and o which
satisfy the constitutive eqn (2), the quasi-periodic boundary conditions (3) and (4) and
continuity condition (5). The solution (i, o) which also satisfies the equation of motion (1) and
the continuity condition (6) is given by the variational equation

8I(u)+ o(al2)éu(al2)(1 - e 4%y =0 N

o= [ (A0 o),

Proof: Taking variations with respect to u and after carrying out the necessary integrations,
we obtain

where

8I(u) + o(al2)bu(al2)(1 — 29y = f { (x) dx)+p(x)w u}au dx

+ {tr(al2) - mg—:(aﬁ)} du(al2)+ m g—g— - af2)8u(— af2) - o(al2)du(af2) e "*4°

( (bl2) (blZ)Gu(b!2)> <n( bl2)a—-(-b12)8u(—bf2))
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Here we use the notation
(g(xo)) = g(x0") — 8(x07).

If u and o are restricted to the subclass of functions which satisfy eqns (2)-(5), this
expression reduces to

af2 dO' )
j (a—x- +p(x)w u)&u dx + (o(b/2))8u(b{2) + {o(— bI2)Ybu(~ b/2).

—-al2

This expression vanishes for arbitrary du if and only if u and o satisfy eqns (1) and (6).

(b) Complementary energy principle

Let us choose a pair of sectionally continuous and differentiable functions u and o which
satisfy the equation of motion (1), the quasi-periodic boundary conditions (3) and (4) and continuity
condition (6). The solution (i, o) which also satisfies the constitutive eqn (2) and the continuity
condition (5) is given by the variational equation

8J(a) + u(al2)8a(aj2)(1 - e #4%) =0 )]

where

Jo)= m{ 2:(1) 2;53«» ax

and the prime denotes differentiation with respect to x.
Proof: Taking variations with respect to o and after carrying out the necessary integrations
we obtain

. al2 '
8J(c) + u(al2)do(al2)[1 — e 249 = f_m - {n—("x—)+ di‘; (——” (;’)w )}50' dx

(u( 1)+ 2l 2)) 80 (al2)

- i"—;lw‘-’%z—’aa(— al2) - u(al2)éo(al2) e~
1

a'(bf2)
'< T )

()

If u and o are restricted to the subclass of functions which satisfy eqns (1), (3), (4) and (6), this
expression reduces to

2 du @
f_m (a; - m)w dx + (u(b2)) 5o (bl2) + (u(~ bI2))8cr(~ bI?2).

This expression vanishes for arbitrary do if and only if ¥ and o satisfy eqns (2) and (5).

(c) Hellinger-Reissner principle

Let us choose a pair of sectionally continuous and differentiable functions # and o which
satisfy the quasi-periodic boundary conditions (3) and (4) and continunity condition (5). The
solution (u, o) which also satisfies the equation of motion (1), the constitutive eqn (2) and
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continuity condition (6) is given by the variational equation
5K (u, o) + o(al2)du(al2)(1 —e ) =0 )
where

[ du o? (x)wu?
K, o) = _az(—aa+——-——~2n(x)+!5’-—~——--2 )dx.

Proof: Taking variations with respect to # and o and after carrying out the necessary
integrations we obtain

af2 (_i_ _ ilf
n{x) dx

+ o(— al2)du(~ a/2) — o(al2)u(af2) e 2

+ (o (b/2)8u(b/2)) + {o(— bi2)bu(— b2)).

af2
8K (u, o) + olal2)ulal2)(1 — e~ = f_m (§§+ p(x)w?‘u)au dx+ f_m

)&r dx

If u and o are restricted to the subclass of functions which satisfy eqns (3)-(5), this
expression reduces to '

a2 d o 3 af2 L B gg _ _
L}z (a; +p(x)o u)Su dx + f‘m (n Z dx)&:r dx + (o(6/2)8u(bI2) + (o (— bI2)Su(=bi2).

This expression vanishes for arbitrary du and 8¢ if and only if ¥ and o satisfy eqns (1), (2)
and {6).

(d) A general variational principle
The variational equation

8[K(u, o)+ Ly + L_p] + o(af2){8u(al2) ~ du(— af2) e} + {u(al2) e ~ u(— a2)}da(al2) = 0
(10)
where

Ly = —[a(b712) + a(b* D) Ku(bl2))
L., =—3a(=b"12)+ a(= b IDKu(= b2))

and K(u,o) is defined in eqn (9) is completely equivalent to the original boundary-value
problem (1)-(6). '

Proof: Taking variations with respect to u and o and after carrying out the necessary
integrations, we obtain

al2 d al2 )
f (aff + p(X)wzu)au dx + Lﬂz (;{x—)— gf)&r dx +{u(al2) e — u(- al2)}60(al2)

—af2
—{o(al2) e — (- a]2)}Su(— al2) - Hu(blD}{Ba(b*12) + 8o (b™/2)} - Hu(~ b/2))
x {8a(— b*[2)+ 80 (~ b2} + o (BI2)){Bu(b*12) + 8u(b ™12} + 1o (- bI2)
X {8u(—b*12)+ du(- b~ 2)}.

This expression vanishes for arbitrary du and 8¢ if and only if ¥ and & satisfy the complete
set of eqns (1)~(6).

A NUMERICAL EXAMPLE

(a) The problem and method of solution
As an illustration, we consider an application of the extended version of the Hellinger-
Reissner principle (9). This principle offers greater flexibility than the strain energy or com-
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where
12
B={ ”—(p%(—)% Ui(X) U X) dX
Q=1 sin Q+(8— D sin{a(Q+w(j+ k)] . i
} 2AQ+ (i +k) *Qr=nlh)
=Q(1+¢12(0—1)) it O=—n(i+k)
1/2 7
li= | 3700 SXS(X) dx
_sin{a(Q+ w(j+ k)}+ E[(—=1¥** sin Q—sin{a(Q+ 7(j + k)}] . L
= AQ+ G +R) t Q#-wlith
~2t80) i Q——n(jth
12 :
I = -”29%(%—)5,‘@) dx
itk N o
-CUHQIIM ¢ Qr (it k)

=i(Q+2m) f Q=-n(j+k)
inu - (1 — e—ZiQ) ei(Q+ar(j+k)).

Taking variations and equating the coefficients of 8C; and 6D, to zero, we obtain the matrix

equation
et = 15)- [l

The matrices I*, I, J** and I** are each of order m X m (where m = 2n + 1). The elements of
I“ and I’ are functions of the complex frequency w through € and 7. Thus, for any given wave
number Q, the frequency » can be obtained by solving the equation

det [N(w, @)1 =0 (16)

where N is a 2m X 2m matrix

Once an eigenvalue w is known, the corresponding eigenvector and hence the mode shapes
U and S can be easily calculated.

In order to proceed further, we must assume a functional form for £(w). We assume, as in
[8] that the matrix is a standard linear solid and the filament is elastic, so that

R G
1 tstm

mls) =M, ) = m (17)

where s = iw, ;% and 7, are the “rubbery” (at long time) and *“glassy” (at short time) moduli
respectively and 7, is the relaxation time of the matrix material. The filament is elastic so that
72 is independent of « and is real.

The standard linear solid is used as an example. The method applies to any linear
viscoelastic material as long as 7(w) and 1;(w) are known.
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We define some further dimensionless quantities

"7G = nzG/mG, o= mR/mG

t1=C|GT|/a, s’=sa/C,G (18)
(6:_“,[ 1-(1-0)a ]”’-
1-(1-7%a

where C,¢ =v/(1,% py) is a reference phase velocity.
In terms of these

781 +s'ty)
(8, +5't)

Q(s) = ~(s")In°.

&(s)=
(19)

We now rewrite the matrix N(s) in order to show the frequency dependence explicitly. Thus,
eqn (16) becomes

As”? | B B
N E T e T (20)
. (8;+s'ty)

where A, B, E, F, G are (m X m) matrices given by

(=) sin Q+(0— D) sin{a(Q + w( + k)] it Q% —m(j+k)

A= n2(Q+ 7+ k)
=————G——(l+"‘n(0“1)) if Q=—n(j+k)

By =Jji' = Iii

Ex=Lf

7°[(=1y** sin Q- sin{a(Q+7(j+ kY]

Ey = e it Q#m(j+k)
=nG(1—a) if Q=—7T(j+k)
_sin{e(Q+ 7(j + k))} . o

Gy = 0+7G+h) if Q#—w(j+k)

The elements of A, B, E, F and G are known once the wave number and the other
parameters of the problem are specified. Equation (20) represents a nonlinear eigenvalue
problem since many of the elements of N are nonlinear functions of s. It is possible to reduce
this to a standard eigenvalue problem so that s’ is an eigenvalue of a new matrix M of order
3m x 3m. This increases the size of the problem but we can now use any of the standard
computer algorithms for determination of eigenvalues of a matrix.

We observe that

det [‘ ¥ '] = det [M;;My — M; My M;j/M;;]

if the matrices are conformable and Mi' exists, so that eqns (20) can be expanded as

det[Is?+Ps” +Hs'+ yH] =0 2n
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where
P=R'(F+G§)
H=tR'EA'B
vy=&lt
R = tl(G+F)’

and I is the unit matrix.
Now s’ is an eigenvalue of a 3m X 3m matrix M defined as

o , 1,0
M= 0 '0 *'1 (22)
~yH'-H'-P
This can be easily proved by expanding the equation
det[M-1s]=0. (23)

(b) Results and conclusions
Numerical calculations are carried out for the following values of the parameters [§]

n°=4 and 50 6=3
5=070 £,=00455 a=05

m=7 and 11.

The wave number Q is specified and only the range 0<Q < needs to be studied[10]
because the Floquet form of the solution is not uniquely determined.

The dispersion curves are obtained by calculating the eigenvalues of M (eqn 22) using an
IBM 360/67 computer. A standard QR algorithm is used. Once the frequency is known for a
certain Q we calculate the corresponding eigenvector of the matrix N (eqns 15, 20). Now the
mode shape U and S are obtained from eqn (13).

Q
EXACT SOLUTION

------------ Il PLANE WAVES
—————————— 7 PLANE WAVES

Fig. 2. Dispersion curves &g vs Q; ¢ =4, =3, a =0.5, 8, =0.70, ¢, = 0.0455.
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Fig. 3. Dispersion curves ég vs Q; 7% =50, 8 =3, a = 0.5, §, =0.70, £, = 0.0455.

T q

Q
EXACT SOLUTION
~~~~~~~~~~~~~~ 11 PLANE WAVES
e 7 PLANE WAVES

Fig. 4. Damping curves &, vs Q; n° =4, =3, a =05, §, =07, t, = 0.0455.

Figures 2-5 show the real and imaginary parts of the frequency & as a function of the wave
number Q for the first § modes. The approximate solutions for m =7 and 11 are compared with

the exact solution obtained from (11). The agreement is excellent with m = 11 for the first two
modes but the approximate solutions become progressively inaccurate for higher modes. The
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EXACT SOLUTION
____________ Il PLANE WAVES
——————-7 PLANE WAVES

Fig. 5. Damping curves &; vs Q; 7% =50, 0 =3, @ =0.5, §, = 0.7, , = 0.0455.
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——————— 7 PLANE WAVES

Fig. 6. Displacement and stress distribution for the first mode; n¢=4,0=3,a =05, Q=n/2.
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. 3

MATRIX FILAMENT | MATRIX
i
i

/

DISPLACEMENT

-

08

(81

04

02

POSITION X

EXACT SOLUTION
........... It PLANE WAVES
——————— 7 PLANE WAVES

Fig. 7. Displacement and stress distribution for the first mode; ¢ =350, 0 =3, a = 0.5, Q = n/2.

maximum error in the real part of the frequency for m = 11 is of the order of 10% and occurs
for the fifth mode for Q = #. The error is much higher for the imaginary part of the frequency
for the fifth mode. We recall that o, determines the rate of exponential decay in time.

A comparison with [8] shows that in this case the finite difference scheme is more efficient.
Also, a comparison with [4] shows that the Hellinger-Reissner principle does not work as
efficiently as it does in the elastic case. The fundamental mode, however, is obtained very
accurately with m =7 and this mode dominates since the higher modes decay faster.

Mode shapes are shown in Figs. 6 and 7. The real parts of the displacement and stress are
shown for the fundamental mode for Q = #/2. The normalizing constant is chosen as in [8] so
that U(0)=1+0i. The results for m =11 are in excellent agreement with the exact solution
even though the stress and displacement are expanded in series of smooth functions (13) while
the solutions contain sharp discontinuities in slope at the interfaces. The stress solution is more
accurate than in [8] because here it is obtained independently rather than being obtained from U
by numerical differentiation.

The Hellinger-Reissner principle enables us to obtain continuity of both stress and dis-
placement across the interface while if the strain energy principle is used together with a
smooth displacement field a stress discontinuity results[1].

To sum up, this paper presents some variational principles which can be used to study wave
propagation in laminated viscoelastic composites. A numerical example gives encouraging
results. These principles can be extended to higher dimensions to study wave propagation in
fiber reinforced viscoelastic composites.
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